# RBSE Solutions for Class 10 Maths Chapter 17 Measures of Central Tendency Ex 17.2

RBSE Solutions for Class 10 Maths Chapter 17 Measures of Central Tendency Ex 17.2 is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Exercise 17.2.

 Board RBSE Textbook SIERT, Rajasthan Class Class 10 Subject Maths Chapter Chapter 17 Chapter Name Measures of Central Tendency Exercise Exercise 17.2 Number of Questions Solved 8 Category RBSE Solutions

## Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Ex 17.2

Find the mean (arithmetic) of following (RBSESolutions.com) frequency distribution (Q. 1 – 4)
Ex 17.2 Class 10 RBSE Question 1.

Solution :
Table of A.M.

Thus, A.M. ($$\overline { x }$$) = $$\frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 99 }{ 14 }$$ = 7.07
Thus, required A.M. = 7.07

RBSE Solutions For Class 10 Maths Chapter 17.2 Question 2.

Solution :
Table for A.M.

Thus, arithmetic (RBSESolutions.com) mean ($$\overline { x }$$) = $$\frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 151 }{ 20 }$$ = 7.55
Thus, required A.M. = 7.55

Exercise 17.2 Class 10 RBSE Question 3.

Solution:
Table for A.M.

Thus, arithmetic (RBSESolutions.com) mean ($$\overline { x }$$) = $$\frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 72 }{ 210 }$$ = 0.34
Thus, required A.M. = 0.34

Class 10 Maths RBSE Solution Chapter 17 Question 4.

Solution:
Table for A.M.

Thus, arithmetic (RBSESolutions.com) mean ($$\overline { x }$$) = $$\frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 27.5 }{ 50 }$$ = 0.55
Thus, required A.M. = 0.55

RBSE Class 10 Maths Chapter 17 Question 5.
The number of children in 100 families ia as follows :

Find their arithmetic mean.
Solution:
calculation for (RBSESolutions.com) arithmetic mean

Thus, arithmetic mean ($$\overline { x }$$) = $$\frac { { \Sigma f }{ x } }{ { \Sigma f } } =\frac { 200 }{ 100 }$$ = 2
Thus, arithmetic mean = 2

RBSE Solution Class 10 Maths Chapter 17 Question 6.
Weight of students in a class are (RBSESolutions.com) given in following table :

Find their arithmetic mean :
Solution :
Table for A.M.

Thus, arithmetic mean ($$\overline { x }$$) = $$\frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } } =\frac { 717 }{ 30 }$$ = 23.9
Thus, required A.M. = 23.9

RBSE Solutions For Class 10 Maths Chapter 17 Question 7.
If mean of following (RBSESolutions.com) distribution is 7.5 then find value of p

Solution :
Arithmetic mean = 7.5

Thus, arithmetic mean ($$\overline { x }$$) = $$\frac { { \Sigma f }{ x } }{ { \Sigma f } }$$
7.5 = $$\frac { 303+9P }{ 41+P }$$
⇒ (41 + p) (7.5) = 303 + 9P
⇒ (41 × 7.5) + 7.5p = 303 + 9P
⇒ 307.5 – 303 = 9P – 7.5P
⇒ 1.5P = 4.5
⇒ P = $$\frac { 4.5 }{ 1.5 }$$ = 3
Thus, value of P = 3

Ch 17 Maths Class 10 RBSE Question 8.
If mean following frequency (RBSESolutions.com) distribution is 1.46, then find unknown frequencies.

Solution:
Let unknown frequencies are f1 and f2 :

Given : Σfi = 200
But from table Σfi = 86 + f1 + f2
So, 86 + f1 + f2 = 200
⇒ f1 + f2 = 200 – 86 = 114
⇒ f1 + f2 = 114 ……(i)
According to question, (RBSESolutions.com) arithmetic mean = 1.46
or $$\overline { x }$$ = $$\frac { { \Sigma f }_{ i }{ x }_{ i } }{ { \Sigma f }_{ i } }$$
⇒ 1.46 = $$\frac { { 140+f }_{ 1 }{ +2f }_{ 2 } }{ 200 }$$
⇒ 140 + f1 + 2f2 = 292
f1 + f2 = 292 – 140
f1 + 2f2 = 152 ….(ii)
subtracting equation (ii)from(i),

Putting value of f2 in equation (i),
f1 + 38 = 114
⇒ f1 = 114 – 38 = 76
Thus, unknown (RBSESolutions.com) frequencies are 76 and 38

We hope the given RBSE Solutions for Class 10 Maths Chapter 17 Measures of Central Tendency Ex 17.2 will help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 17 Measures of Central Tendency Exercise 17.2, drop a comment below and we will get back to you at the earliest.