RBSE Solutions for Class 10 Maths Chapter 3 बहुपद Ex 3.2 is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 3 बहुपद Exercise 3.2.
Board | RBSE |
Textbook | SIERT, Rajasthan |
Class | Class 10 |
Subject | Maths |
Chapter | Chapter 3 |
Chapter Name | बहुपद |
Exercise | Exercise 3.2 |
Number of Questions Solved | 4 |
Category | RBSE Solutions |
Rajasthan Board RBSE Class 10 Maths Chapter 3 बहुपद Ex 3.2
प्रश्न 1.
विभाजन एल्गोरिथ्म का प्रयोग करके f(x) को g(x) से भाग देने (RBSESolutions.com) पर भागफल तथा शेषफल ज्ञात कीजिए
(i) f(x) = 3x2 + x2 + 2x + 5, g(x) = 1 + 2x + x2
(ii) f(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2
(iii) f(x) = x3 – 6x2 + 11x – 6, g(x) = x + 2
(iv) f(x) = 9x4 – 4x2 +4, g(x) = 3x2 + x – 1
हल:
(i) हम सर्वप्रथम भाजक एवं भाज्य के पदों की घटती हुई घातों के क्रम में व्यवस्थित करते हैं । यहाँ पर भाज्य पहले से ही मानक रूप में हैं तथा मानक रूप में भाजक x2 + 2x + 1 है।
इसलिए भागफल 3x – 5 तथा शेषफल 9x + 10 होगा।
यहाँ— भागफल × भाजक + शेषफल
(3x – 5) (1 + 2x + x2) + 9x + 10
= 3x + 6x2 + 3x3 – 5 – 10x – 5x2 + 9x + 10
= 3x3 + x2 – 7x – 5 + 9x + 10
= 3x3 + x2 + 2x + 5
= भाज्य
अतः विभाजन एल्गोरिथ्म का प्रयोग सत्यापित होता है।
(ii) यहाँ भाज्य और भाजक दोनों मानक रूप (RBSESolutions.com) में हैं। इसलिए हमें प्राप्त है।
इसलिए भागफल x – 3 तथा शेषफल 7x – 9 होगा।
यहाँ- भागफल × भाजक + शेषफल
(x – 3) (x2 – 2) + 7x – 9
=x3 – 2x – 3x2 + 6 + 7x – 9
= x3 – 3x2 – 2x + 6 + 7x – 9
= x3 – 3x2 + 5x – 3
= भाज्य
अतः विभाजन एल्गोरिथ्म का प्रयोग सत्यापित होता है।
(iii) यहाँ पर भाज्य और भाजक दोनों (RBSESolutions.com) ही मानक रूप में हैं, हमें प्राप्त है।
इसलिए भागफल x2 – 8x + 27 तथा शेषफल – 60 होगा।
यहाँ- भागफल × भाजक + शेषफल
(x2 – 8x + 27) × (x + 2) – 60
= x3 + 2x2 – 8x2 – 16x + 27x + 54 – 60
= x3 – 6x2 + 11 – 6
= भाज्य
अतः विभाजन एल्गोरिथ्म का प्रयोग सत्यापित होता है।
(iv) यहाँ पर भाज्य और भाजक (RBSESolutions.com) दोनों ही मानक रूप में हैं। हमें प्राप्त है।
इसलिए भागफल 3x2 – x तथा शेषफल (-x + 4) होगा।
यहाँ- भागफल × भाजक + शेषफल
(3x2 – x) × (3x2 + x – 1) + (-x + 4)
= 9x4 + 3x3 – 3x2 – 3x3 – x2 + x – x + 4
= 9x4 – 4x4 +4
= भाज्य
अतः विभाजन एल्गोरिथ्म का प्रयोग सत्यापित होता है।
प्रश्न 2.
पहले बहुपद से दूसरे बहुपद को भाग करके, (RBSESolutions.com) जाँच कीजिए कि प्रथम बहुपद दूसरे बहुपद का एक गुणनखण्ड है
(i) g(s) = x2 + 3x + 1, f(x) = 3x4 + 5x3 – 7x2 + 2x + 2
(ii) g(t) = t2 – 3, f(t) = 2x4 + 3t3 – 2t2 – 9y – 12
(iii) g(x) = x3 – 3x + 1, f(x) = x5 – 4x3 + x2 + 3x + 1
हल
(i) 3x4 + 5x3 – 7x2 + 2x + 2 को x2 + 3x + 1 से भाग करने पर
चूँकि, शेषफल शून्य है, अतः x2 + 3x + 1 बहुपद 3x4 + 5x3 – 7x2 + 2x + 2 को एक गुणनखण्ड है। उत्तर
(ii) 2t4 + 3t3 – 2t2 – 9t – 12 को t2 – 3 से भाग करने पर
चूँकि, शेषफल शून्य है, अतः t2 – 3 बहुपद 2t4 + 3t3 – 2t2 – 9t – 12 का एक गुणनखण्ड है। उत्तर
(iii) x5 – 4x3 + x2 + 3x + 1 बहुपद को x3 – 3x + 1 से भाग करने पर
यहाँ शेषफल 2 है अर्थात् शेषफल शून्य (RBSESolutions.com) नहीं है अतः x3 – 3x + 1 बहुपद x5 – 4x3 + x2 + 3x + 1 का गुणनखण्ड नहीं है। उत्तर
प्रश्न 3.
निम्न बहुपदों के साथ उनके शून्यक दिये गये हैं, अन्य सभी शून्यक ज्ञात कीजिए
(i) f(x) = 2x4 – 3x3 – 3x2 + 6x – 2; \(\sqrt { 2 } \) और \(-\sqrt { 2 } \)
(ii) f(x) = x4 – 6x3 – 26x2 + 138r – 35; \(2\pm \sqrt { 3 } \)
(iii) f(x) = x3 + 13x2 + 32x + 20; – 2
हल:
(i) चूँकि x = α एक बहुपद का शून्यक है, तो (x – α) बहुपद f(x) का गुणनखण्ड होता है। चूँकि \(\sqrt { 2 } \) और \(-\sqrt { 2 } \) बहुपद f(x) के शून्यक हैं,
इसलिए \(\left( x-\sqrt { 2 } \right) \left( x+\sqrt { 2 } \right) ={ x }^{ 2 }-2\), बहुपद (x) का एक गुणनखण्ड है।
अब, हम f(x) = 2x4 – 3x3 – 3x2 + 6x – 2 के अन्य शून्यक ज्ञात करने के लिए इसको g(x) = x2 – 2 से विभाजित करते हैं।
(ii) चूँकि x = α एक बहुपद का (RBSESolutions.com) शून्यक है, तो (x – α) बहुपद f(x) का f(x) गुणनखण्ड होता है।
चूँकि \(\left( 2+\sqrt { 3 } \right) \) और \(\left( 2-\sqrt { 3 } \right) \) बहुपद f(x) के शून्यक हैं। इसलिए
(iii) चूंकि x = α एक बहुपद का, (RBSESolutions.com) शून्यक है, तो (x – α) बहुपद f(x) का गुणनखण्ड होता है, इसलिए (x + 2) बहुपद f(x) का एक गुणनखण्ड है।
अब, हम f(x) = x3 + 13x2 + 32x + 20 के अन्य शून्यक ज्ञात करने के लिए इसको g(x) = (x + 2) से विभाजित करते हैं।
अतः दिये हुए बहुपद के शून्यक – 2, – 10 और – 1 हैं।
अतः बहुपद के अन्य शून्यक – 10 और – 1 हैं। उत्तर
प्रश्न 4.
बहुपद f(x) = x3 – 3x++ +2 को बहुपद g(x) से भाग देने (RBSESolutions.com)पर भागफल q(x) तथा शेषफल r(x) क्रमशः x-2 और – 2x +4 प्राप्त होता है तो बहुपद g(x) ज्ञात कीजिए।
हल:
बहुपद x3 – 3x2 + x + 2 को एक बहुपद g(x) से भाग देने पर भागफल (x – 2) व शेषफल – 2x +4 प्राप्त होता है।
इस प्रकार (RBSESolutions.com)समीकरण (i) से g(x) = x2 – x + 1 प्राप्त होता है। उत्तर
We hope the RBSE Solutions for Class 10 Maths Chapter 3 बहुपद Ex 3.2 help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 3 बहुपद Exercise 3.2, drop a comment below and we will get back to you at the earliest.