RBSE Solutions for Class 12 Maths Chapter 6 सततता तथा अवकलनीयता Ex 6.1

RBSE Solutions for Class 12 Maths Chapter 6 सततता तथा अवकलनीयता Ex 6.1 is part of RBSE Solutions for Class 12 Maths. Here we have given Rajasthan Board RBSE Class 12 Maths Chapter 6 सततता तथा अवकलनीयता Exercise 6.1.

Rajasthan Board RBSE Class 12 Maths Chapter 6 सततता तथा अवकलनीयता Ex 6.1

प्रश्न 1.
निम्न फलनों की सातत्यता का परीक्षण कीजिए-
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 1
हल :
(a)
दिया गया फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 2
तथा x = 0 के लिए,
f(0) = 0
∴ f(0 – 0) = f(0 + 0) = f(0) = 0
अतः दिया हुआ फलन x = 0 पर सतत है।

(b)
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 3
दिया गया फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 4
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 5
= कोई अस्तित्व नहीं है।
∵ बायीं सीमा तथा दार्थी सीमा का कोई अस्तित्व नहीं है।
अत: दिया हुआ फलन x = 0 पर असतत है।

(c)
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 6
दिया गया फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 7
तथा x = 3 के लिए।
f(3) = 1 + x ⇒ 1 + 3 = 4
∴ f(3 – 0) = (3 + 0) = f(3) = 4
अतः दिया गया फलन x = 3 पर सतत है।

(d)
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 8
दिया गया फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 9
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 10
तथा x = 0 के लिए,
f(0) = sin 0 = 0
∴ f(0 – 0) = f(0 + 0) = f(0) = 0
अत: दिया हुआ फलन x = 0 पर सतत है।

(e)
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 11
दिया गया फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 12
तथा x = a के लिए,
f(a) = 0 (प्रश्नानुसार)
∴ f(a – 0) = f(a + 0) ≠ f(a)
अतः दिया हुआ फलन x = a पर असतत है।

(f)
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 13
दिया गया फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 14
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 15
तथा x = a के लिए,
f(a) = 0 (प्रश्नानुसार)
∴ f(a – 0) = f(a + 0) ≠ f(a)
अतः दिया हुआ फलन x = a पर असतत है।

(g)
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 16
दिया गया फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 17
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 18
तथा x = a के लिए,
f(a) = 0.
∴ f(a – 0) = f(a + 0) = f(a) = 0
अतः दिया हुआ एलन x = a पर सतत है।

प्रश्न 2.
फलन f(x) = x – [x] की x = 3 पर सततता का परीक्षण कीजिए।
हल :
दिया गया फलन, f(x) = x – [x], x = 3 पर
बायीं सीमा (Left hand limit) के लिए,
f(3 – 0) = limh→0 f(3 – h)
= limh→0 (3 – h) – [3 – h]
= 3 – 2
= 1
[क्योंकि 3 के पहले महत्तम पूर्णांक 2 है।]
दाय सीमा (Right hand limit) के लिए,
f(3 + 0) = limh→0 f(3 + h)
= limh→0 (3 + h) – [3 + h]
= 3 – 3
= 0
∴(3 – 0) ≠ f(3 + 0)
अतः दिया हुआ फलन x = 3 पर असतत है।

प्रश्न 3.
यदि निम्न फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 19
बिन्दु x = 2 पर सतत है, तब λ का मान ज्ञात कीजिए।
हल :
बायीं सीमा (Left hand limit) के लिए,
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 20
∴ फलन x = 2 पर सतत है, तब
f(2 – 0) = f(2 + 0) = f(2)
तब 7 = 7 = λ.
अतः λ = 7.

प्रश्न 4.
निम्न फलन
RBSE Solutions for Class 12 Maths Chapter 6 Ex 6.1 21
के अन्तराल [-1,2] में सततता का परीक्षण कीजिए।
हल :
हम यहाँ पर फलन की सततता की जाँच बिन्दु x = 0 पर कारेंगे तथा 0 ∈ [-1, 2].
x = 0 पर फलन की सततता का परीक्षण,
बायीं सीमा (Left hand limit) के लिए,
f(0 – 0) = limh→0 f(0 – h)
= limh→0 (0 – h)²
= limh→0
= 0
दायीं समा (Right hand limit) के लिए,
f(0 + 0) = limh→0 f(0 + h)
= limh→0 4(0 + h) – 3
= limh→0 4h – 3
= 0 – 3
= – 3
∴ f(0 – 0) ≠ f(0 + 0)
बार्थी सीमाके ≠ दार्थी सीमा
अतः फलन x = 0 पर असतत है तथा x ∈ [-1, 2]
x = 1 पर फलन की सततता का परीक्षण
बायीं सीमा (Left hand limit) के लिए,
f(1 – h) = limh→0 4 (1 – h) – 3
= limh→0 4 – 3 – 4h
= 4 – 3 – 0 = 1
दाय सीमा (Right hadn limit) के लिए,
(1 + h) = limh→0 5(1 + h)² – 4(1 + h)
= limh→0 5(1 + h² + 2h) – (4 + 4h)
= limh→0 5h² + 10h + 5 – 4 – 4h
= 5 x 0 + 10 x 0 + 1 – 4 (0)
= 1
x = 1 पर फलन का मान ।
f(1) = 4 x 1 – 3 = 1
∵ limh→0 f(1 – h) = f(1) = limh→0 f(1 + h)
∴ फलन x = 2 पर सततता है।
अत: दिया हुआ फलन अन्तराल [-1, 2] में असतत है।

We hope the given RBSE Solutions for Class 12 Maths Chapter 6 सततता तथा अवकलनीयता Ex 6.1 will help you. If you have any query regarding RBSE Solutions for Class 12 Maths Chapter 6 सततता तथा अवकलनीयता Ex 6.1, drop a comment below and we will get back to you at the earliest.

Leave a Comment

Step into high-class excitement at hell spin casino, where glittering reels, lavish bonuses, and thrilling jackpots create nonstop luxury. Each spin delivers pulse-raising suspense, elegance, and the electrifying chance of big Australian online casino wins.

Indulge in elite thrills at joefortune-casino.net, offering dazzling gameplay, sparkling rewards, and adrenaline-pumping jackpots. Every moment immerses players in glamour, high-stakes excitement, and the intoxicating pursuit of substantial casino victories.

Discover top-tier sophistication at neospin casino, with vibrant reels, generous bonuses, and luxurious jackpots. Each spin captivates with elegance, thrill, and the electrifying potential for extraordinary wins in the premium Australian casino environment.

Enter a world of luxury at rickycasino-aus.com, where high-class slots, sparkling bonuses, and pulse-racing jackpots create unforgettable moments. Every wager delivers excitement, sophistication, and the premium thrill of chasing massive casino wins.