RBSE Solutions for Class 8 Maths Chapter 11 Linear Equations with One Variable Ex 11.1

RBSE Solutions for Class 8 Maths Chapter 11 Linear Equations with One Variable Ex 11.1 is part of RBSE Solutions for Class 8 Maths. Here we have given Rajasthan Board RBSE Class 8 Maths Chapter 11 Linear Equations with One Variable Exercise 11.1.

Board RBSE
Textbook SIERT, Rajasthan
Class Class 8
Subject Maths
Chapter Chapter 11
Chapter Name Linear Equations with One Variable
Exercise Exercise 11.1
Number of Questions 10
Category RBSE Solutions

Rajasthan Board RBSE Class 8 Maths Chapter 11 Linear Equations with One Variable Ex 11.1

Solve the following equations

Question 1.
6x + 3 = 4x + 11
Solution
6x + 3 = 4x + 11
⇒ 6x – 4x = 11 – 3
| On transposing 4x and 3
⇒ 2x = 8
\(\frac { 2x }{ 2 } =\frac { 8 }{ 2 } \)
| On dividing(RBSESolutions.com)by 2 on both sides
⇒ x = 4

RBSE Solutions

Question 2.
3(x + 5) = 4x + 9
Solution
3(x + 5) = 4x + 9
⇒ 3x + 15 = 4x + 9
⇒ 3x – 4x = 9 – 15
| On transposing 4x and 15
⇒ – x = – 6
\(\frac { -x }{ -1 } =-\frac { 6 }{ 1 } \)
| On dividing(RBSESolutions.com)by – 1 on both sides
⇒ x = 6

RBSE Solutions

Question 3.
3x + 2(x + 3) = 21
Solution
3x + 2(x + 3) = 21
⇒ 3x + 2x + 6 = 21
⇒ 5x + 6 = 21
⇒ 5x = 21 – 6
| On transposing 6
⇒ 5x = 15
\(\frac { 5x }{ 5 } =\frac { 15 }{ 5 } \)
| On dividing by 5 on both sides
⇒ x = 3

RBSE Solutions

Question 4.
\(\frac { x+1 }{ 2 } +\frac { x+2 }{ 3 } =\frac { 2x-5 }{ 7 } +9\)
Solution.
\(\frac { x+1 }{ 2 } +\frac { x+2 }{ 3 } =\frac { 2x-5 }{ 7 } +9\)
21(x + 1) + 14 (x + 2) = 6(2x – 5) + 9 x 42
Multiplying by 42 as LCM of 2, 3 and 7 is 42
⇒ 21x + 21 + 14x + 28 = 12x – 30 + 378
⇒ 21x + 14x + 21 + 28 = 12x – 30 + 378
⇒ 35x + 49 = 12x + 348
⇒ 35x – 12x = 348 – 49
| On transposing 12x and 49
⇒ 23x = 299
⇒ \(\frac { 23x }{ 23 } =\frac { 299 }{ 23 } \)
| On dividing(RBSESolutions.com)by 23 on both sides
⇒ x = 13

RBSE Solutions

Question 5.
\(\frac { 3x-2 }{ 5 } =4-\left( \frac { x+2 }{ 3 } \right) \)
Solution
\(\frac { 3x-2 }{ 5 } =4-\left( \frac { x+2 }{ 3 } \right) \)
⇒ 3(3x – 2) = 15 × 4 – 5 (x + 2)
Multiplying by 15 as LCM of 5 and 3 is 15
⇒ 9x – 6 = 60 – 5x – 10
⇒ 9x – 6 = – 5x + 60 – 10
⇒ 9x – 6 = – 5x + 50
⇒ 9x + 5x = 50 + 6
| On transposing – 6 and – 5x
⇒ 14x = 56
⇒ \(\frac { 14x }{ 14 } =\frac { 56 }{ 14 } \)
| On dividing by 14 on both sides
⇒ x = 4

RBSE Solutions

Question 6.
\(\frac { x+2 }{ 2 } +\frac { x+4 }{ 3 } =\frac { x+6 }{ 4 } +\frac { x+8 }{ 5 } \)
Solution.
\(\frac { x+2 }{ 2 } +\frac { x+4 }{ 3 } =\frac { x+6 }{ 4 } +\frac { x+8 }{ 5 } \)
⇒ 30(x + 2) + 20(x + 4) = 15(x + 6) + 12(x + 8)
On multiplying by LCM of 2, 3, 4 and 5 i.e. 60 on both sides
⇒ 30x + 60 + 20x + 80 = 15x + 90 + 12x + 96
⇒ 30x + 20x + 60 + 80 = 15x + 12x + 90 + 96
⇒ 50x + 140 = 27x + 186
⇒ 50x – 27x = 186 – 140
| On transposing 140 and 27x
⇒ 23x = 46
⇒ \(\frac { 23x }{ 23 } =\frac { 46 }{ 23 } \)
On dividing(RBSESolutions.com)by 23 on both sides
⇒ x = 2

RBSE Solutions

Question 7.
0.6x + 0.25x = 0.45x + 1.2
Solution
0.6x + 0.25x = 0.45x + 1.2
⇒ \(\frac { 6 }{ 10 } x+\frac { 25 }{ 100 } x=\frac { 45 }{ 100 } x+\frac { 12 }{ 10 } \)
On changing decimal fractions into simple fraction
⇒ 60x + 25x = 45x + 120
On multiplying by 100 since LCM of 10 and 100 is 100
⇒ 85x = 45x + 120
⇒ 85x – 45x = 120
| On transposing 45*
40x = 120
⇒ \(\frac { 40x }{ 40 } =\frac { 120 }{ 40 } \)
| On dividing by 40 on both sides
⇒ x = 3

RBSE Solutions

Question 8.
2.5x – 7 = 0.5x + 13
Solution
2.5x – 7 = 0.5x + 13
⇒ 2.5x – 0.5x = 13 + 7
| On transposing -7 and 0.5x
⇒ 2x = 20
⇒ \(\frac { 2x }{ 2 } =\frac { 20 }{ 2 } \)
| On dividing(RBSESolutions.com)by 2 on both sides
⇒ x = 10

RBSE Solutions

Question 9.
\(\frac { 7x+4 }{ x+2 } =-\frac { 4 }{ 3 } \)
Solution
\(\frac { 7x+4 }{ x+2 } =-\frac { 4 }{ 3 } \)
=> 3(7x + 4) = – 4(x + 2)
| By cross multiplication
=> 21x + 12 = – 4x – 8
=> 21x + 4x = – 8 – 12
| On transposing 12 and – 4x
⇒ 25x = – 20
⇒ \(\frac { 25x }{ 25 } =-\frac { 20 }{ 25 } \)
| On dividing by 25 on both sides
⇒ \(x=-\frac { 4 }{ 5 }\)

RBSE Solutions

Question 10.
\(\frac { 4x+8 }{ 5x+8 } =\frac { 5 }{ 6 } \)
Solution
\(\frac { 4x+8 }{ 5x+8 } =\frac { 5 }{ 6 } \)
⇒ 6(4x + 8) = 5(5x + 8)
| By cross multiplication
⇒ 24x + 48 = 25x + 40
⇒ 24x – 25x = 40 – 48
| On(RBSESolutions.com)transposing 48 and 25x
⇒ – x = – 8
⇒ \(\frac { -x }{ -1 } =\frac { -8 }{ -1 } \)
| On dividing by – 1 on both sides
⇒ x = 8

RBSE Solutions

We hope the given RBSE Solutions for Class 8 Maths Chapter 11 Linear Equations with One Variable Ex 11.1 will help you. If you have any query regarding Rajasthan Board RBSE Class 8 Maths Chapter 11 Linear Equations with One Variable Exercise 11.1, drop a comment below and we will get back to you at the earliest.

Leave a Comment

Step into high-class excitement at hell spin casino, where glittering reels, lavish bonuses, and thrilling jackpots create nonstop luxury. Each spin delivers pulse-raising suspense, elegance, and the electrifying chance of big Australian online casino wins.

Indulge in elite thrills at joefortune-casino.net, offering dazzling gameplay, sparkling rewards, and adrenaline-pumping jackpots. Every moment immerses players in glamour, high-stakes excitement, and the intoxicating pursuit of substantial casino victories.

Discover top-tier sophistication at neospin casino, with vibrant reels, generous bonuses, and luxurious jackpots. Each spin captivates with elegance, thrill, and the electrifying potential for extraordinary wins in the premium Australian casino environment.

Enter a world of luxury at rickycasino-aus.com, where high-class slots, sparkling bonuses, and pulse-racing jackpots create unforgettable moments. Every wager delivers excitement, sophistication, and the premium thrill of chasing massive casino wins.