RBSE Solutions for Class 9 Maths Chapter 2 Number System Ex 2.1 is part of RBSE Solutions for Class 9 Maths. Here we have given Rajasthan Board RBSE Class 9 Maths Solutions Chapter 2 Number System Exercise 2.1.

Board |
RBSE |

Textbook |
SIERT, Rajasthan |

Class |
Class 9 |

Subject |
Maths |

Chapter |
Chapter 2 |

Chapter Name |
Number System |

Exercise |
Ex 2.1 |

Number of Questions Solved |
5 |

Category |
RBSE Solutions |

## Rajasthan Board RBSE Class 9 Maths Solutions Chapter 2 Number System Ex 2.1

Question 1.

Classify the following numbers (RBSESolutions.com) as rational or irrational:

(i) √23

(ii) √225

(iii) 0.3796

(iv) 7.478478…

(v) 1.101001000100001…

Solution.

(i) √23

Here, 23 is not a perfect square number, hence, √23 is an irrational number.

(ii) √225

Here 225 is (RBSESolutions.com) a perfect square of 15, hence √225 is a rational number.

(iii) 0.3796 can be written in \(\frac { p }{ q }\) form,

where q ≠ 0 i.e \(\frac { 3796 }{ 10000 }\)

Hence, it is a rational number.

(iv) 7.478478 i.e. \(7.\bar { 478 } \)

Here, pair of digits (478) are repeating as it is non-terminating but recurring.

(v) 1.101001000100001…. is an irrational number is its decimal expansion is non-terminating and non-recurring.

Question 2.

Write three numbers whose decimal (RBSESolutions.com) expansions are non-terminating non-recurring.

Solution.

The three numbers whose decimal expansions are non-terminating non-recurring i.e. irrational numbers are

0.01001000100001…..

0.02002000200002….

0.03003000300003…….. etc.

Question 3.

Write the following in decimal form and say what (RBSESolutions.com) kind of decimal expansion each has:

Solution.

Question 4.

Express the following in the form \(\frac { p }{ q }\), where p and q are (RBSESolutions.com) integers and q ≠ 0.

Solution.

(i) Let x = \(0.\bar { 3 } \)

i.e., x = 0.3333 …(i)

Multiplying (i) by 10, we get

10x = 3.3333 …(ii)

Subtracting (i) from (ii),

we get 10x – x = 3.3333… – 0.3333…

Question 5.

Find three different irrational numbers between (RBSESolutions.com) the rational numbers \(\frac { 5 }{ 7 }\) and \(\frac { 9 }{ 11 }\).

Solution.

There are infinite irrational numbers between the two given numbers, we may choose any three of them, e.g.

We hope the given RBSE Solutions for Class 9 Maths Chapter 2 Number System Ex 2.1 will help you. If you have any query regarding Rajasthan Board RBSE Class 9 Maths Solutions Chapter 2 Number System Exercise 2.1, drop a comment below and we will get back to you at the earliest.