RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Rajasthan Board RBSE Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 1.
Prove that
\({ sin }^{ 2 }\frac { \pi }{ 6 } +{ cos }^{ 2 }\frac { \pi }{ 3 } -tan^{ 2 }\frac { \pi }{ 4 } =-\frac { 1 }{ 2 } \).
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 2.
\({ sin }^{ 2 }\frac { \pi }{ 6 } +{ cosec }^{ 2 }\frac { 7\pi }{ 6 } -cos^{ 2 }\frac { \pi }{ 3 } =\frac { 3 }{ 2 } \).
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 3.
\({ cot }^{ 2 }\frac { \pi }{ 6 } +{ cosec }^{ 2 }\frac { 5\pi }{ 6 } +3tan^{ 2 }\frac { \pi }{ 6 } =6 \).
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 4.
\(2{ sin }^{ 2 }\frac { 3\pi }{ 4 } +2{ cos }^{ 2 }\frac { \pi }{ 4 } +2sec^{ 2 }\frac { \pi }{ 3 } =10\).
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 5.
Find the value of :
(i) sin 75°
(ii) tan 15°
Solution :
(i) sin 75° = sin (45° + 30°)
= sin 45°.cos 30° + cos 45°.sin 30°
(∵ sin (A + B) = sin A cos B + cos A sin B)
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 6.
Prove that:
tan 225° cot 405° + tan 765° cot 675° = 0.
Solution :
L.H.S.
= tan 225° cot 405° + tan 765° cot 675°
= tan (360° – 135°) cot (360° + 45°) + tan (2 × 360° + 45°) cot (2 × 360° – 45°)
= (- tan 135°) (cot 45°) + (tan 45°) (- cot 45°)
= – tan 135° cot 45° – tan 45° cot 45°
= – tan (180° – 45°) cot 45° – tan 45° cot 45°
= – (- tan 45°) cot 45° – tan 45° cot 45°
= tan 45° cot 45° – tan 45° cot 45° = 0
= R.H.S.
Hence Proved.

Question 7.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3 RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 8.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 9.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 10.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 11.
sin (n + 1) x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Solution :
L.H.S.
= sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x
= cos (n + 1)x cos (n + 2)x + sin (n + 1)x × sin (n + 2)x
[Formula cos (x – y) – cos x cos y + sin x sin y]
= cos [(n + 1)x – (n + 2)x]
= cos [nx + x – nx – 2x]
= cos (- x) cos x = R.H.S.
Hence Proved.

Question 12.
sin2 6x – sin2 4x = sin 2x sin 10x.
Solution :
L.H.S. = sin2 6x – sin2 4x
= \(\frac { 1 }{ 2 }\) [2 sin2 6x – 2sin2 4x] [Multiply and divide by 2]
= \(\frac { 1 }{ 2 }\) [(1 – cos 12x) – (1 – cos 8x)]
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
= sin 10x sin 2x =sin 2x sin 10x = R.H.S.
Second Method: R.H.S.
= sin2 6x – sin2 4x
= (sin 6x + sin 4x) (sin 6x – sin 4x)
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
= (2 sin 5x cos 5x).(2 sin x cos x)
= sin 10x.sin 2x [∵ sin 2θ = 2 sin θ cos θ]
= sin 2x sin 10x = R.H.S. Hence Proved.

Question 13.
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x.
Solution :
L.H.S. = sin 2x + 2 sin 4x + sin 6x
= (sin 2x + sin 6x) + 2 sin 4x
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 14.
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Solution :
L.H.S. = cot 4x (sin 5x + sin 3x)
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
From (i) and (ii), we get
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x).
L.H.S. = R.H.S.
Hence Proved.

Question 15.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 16.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 17.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 18.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 19.
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3
Solution:
RBSE Solutions for Class 11 Maths Chapter 3 Trigonometric Functions Ex 3.3

Question 20.
cos 4x = 1 – 8 sin2 x cosx.
Solution :
L.H.S. = cos 4x = cos 2(2x)
(cos θ = 1 – 2 sin2 θ)
= 1 – 2 sin2 2x
= 1 – 2 (2 sin x cos x)[∵ sin 2x = 2 sin x cos x]
= 1 – 2 x 4 sin2 x cos2 x
= 1 – 8 sin2 x cos2 x = R.H.S.
Hence Proved.

Question 21.
cos 6x = 32 cos6 x- 48 cos4 x + 18 cos2 x- 1.
Solution :
L.H.S. = cos 6x = cos 3(2x) [∵ cos 3x = 4 cos3 x – 3 cos x]
= 4 cos3 2x – 3 cos 2x
= cos 2x (4 cos2 2x – 3)
= cos 2x [4(cos 2x)2 – 3] [∵ cos 2x = 2 cos2 x – 1]
= cos 2x [4(2 cos2 x – l)2 – 3]
= cos 2x [4(4 cos4 x + 1 – 4 cos2 x) – 3]
= cos 2x (16 cos4 x + 4 – 16 cos2 x – 3)
= (2 cos2 x – 1) (16 cos4 x + 4 – 16 cos2 x – 3)
= 32 cos6 x + 8 cos2 x – 32 cos4 x – 6 cos2 x – 16 cos4 x – 4 + 16 cos2 x + 3
= 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
= R.H.S.  Hence Proved.

Question 22.
[1 + cot θ – sec (θ + π/(2)]
[1 + cot θ + sec (θ + π/(2)] = 2 cot θ
Solution :
L.H.S.
[1 + cot θ – sec (θ + π/(2)]
[1 + cot θ + sec (θ + π/(2)]
= [1 + cot θ + cosec θ] [1+ cot θ – cosec θ]
= (1 + cot)2 – cosec2θ
= 1 + cot2θ + 2 cotθ – cosec2θ
= 1 + 2 cot θ – (cosec2θ – cot2θ)
= 1+2 cot θ – 1
= 2 cot θ = R.H.S.
Hence Proved.

RBSE Solutions for Class 11 Maths

 

Leave a Comment

Step into high-class excitement at hell spin casino, where glittering reels, lavish bonuses, and thrilling jackpots create nonstop luxury. Each spin delivers pulse-raising suspense, elegance, and the electrifying chance of big Australian online casino wins.

Indulge in elite thrills at joefortune-casino.net, offering dazzling gameplay, sparkling rewards, and adrenaline-pumping jackpots. Every moment immerses players in glamour, high-stakes excitement, and the intoxicating pursuit of substantial casino victories.

Discover top-tier sophistication at neospin casino, with vibrant reels, generous bonuses, and luxurious jackpots. Each spin captivates with elegance, thrill, and the electrifying potential for extraordinary wins in the premium Australian casino environment.

Enter a world of luxury at rickycasino-aus.com, where high-class slots, sparkling bonuses, and pulse-racing jackpots create unforgettable moments. Every wager delivers excitement, sophistication, and the premium thrill of chasing massive casino wins.