RBSE Solutions for Class 11 Maths Chapter 2 सम्बन्ध एवं फलन Ex 2.3

Rajasthan Board RBSE Class 11 Maths Chapter 2 सम्बन्ध एवं फलन Ex 2.3

प्रश्न 1.
कारण सहित बताइए कि निम्न सम्बन्धों में कौनसे फलन हैं और कौनसे नहीं :
(a) {(1, 2), (2, 3),(3, 4), (2, 1)}
(b) {(a, 0), (b, 0), (c, 1), (d, 1)}
(c) {(1, a), (2, 6), (1, b), (2, a)}
(d) {(a, a), (b, b), (c, c)}
(e) {(a, b)}
(f) {(4, 1), (4, 2), (4, 3), (4, 4)}
(g) {(1, 4), (2, 4), (3, 4), (4, 4)}
(h) {(x, y) | x, y ∈ R ∧ y² = x}
(i) {(x, y) | x, y ∈ R ∧ x² = y}
(j) {(x, y) | x, y ∈ R ∧ x = y³}
(k) {(x, y) | x, y ∈ R ∧ y = x³}
हल-
(a) फलन नहीं हैं, क्योंकि दिये गए सम्बन्ध में समुच्चय A के अवयव 2 का समुच्चय B में दो प्रतिबिम्ब हैं जो कि परिभाषा के अनुसार सम्भव नहीं है।
(b) फलन है क्योंकि समुच्चय A के प्रत्येक अवयव का समुच्चय B में भिन्न-भिन्न प्रतिबिम्ब है।
(c) फलन नहीं है क्योंकि अवयव 1 एवं 2 के समुच्चय B में दो प्रतिबिम्ब हैं, जो कि सम्भव नहीं है।
(d) फलन है। यह तत्समक फलन भी कहलाता है, क्योंकि A का प्रत्येक अवयव स्वयं का प्रतिबिम्ब है।
(e) फलन है।
(f) फलन नहीं है, क्योंकि 4 के एक से अधिक प्रतिबिम्ब समुच्चय B में सम्भव नहीं हैं।
(g) फलन है। इसे अचर फलन भी कहते हैं
(h) यह फलन नहीं है क्योंकि y = √x में x ∈ -1 का कोई प्रतिबिम्ब y में विद्यमान नहीं होगा। अर्थात् समुच्चय A के सभी ऋणात्मक अवयव खाली रहेंगे।
(i) यह फलन है क्योंकि y = x² के लिए x ∈R के प्रत्येक अवयव का समुच्चय B में विद्यमान होगा तथा किसी भी अवयव के दो प्रतिबिम्ब नहीं हैं।
(j) यह फलन है क्योंकि y = x1/3 के लिए x ∈ R का अद्वितीय प्रतिबिम्ब समुच्चय B में विद्यमान है।
(k) यह फलन है क्योंकि y = x³ के लिए x ∈ R का प्रतिबिम्ब समुच्चय B में विद्यमान है तथा अद्वितीय है।

प्रश्न 2.
यदि f: R → R, f(x) = x² हो तो ज्ञात कीजिए :
(i) f का परिसर
(ii) {x |f(x) = 4}
(iii) {y |f(y) = -1}
हल-
(i) दिया है।
f: R → R, f(x) = x²
∴ f(1) = 1² = 1, f(-1) = (-1)² = 1
f(2) = 2² = 4, f(-2) = (-2)² = 4
RBSE Solutions for Class 11 Maths Chapter 2 सम्बन्ध एवं फलन Ex 2.3
अर्थात् x ∈ R के लिए f(x) वास्तविक धनात्मक संख्याओं का समुच्चय प्राप्त होगा अर्थात् R+ अर्थात् {x ∈ R| 0 < x < ∞ }

(ii) दिया गया है।
f(x) = x²
∴f(2) = 2² = 4
f(-2) = (-2)² = 4
⇒ x = ± 2 ⇒(2, -2)

(iii) दिया है f(x) = x²
⇒ f(y) = y² = -1
⇒ y = √-1 ∉ R
∴ रिक्त समुच्चय या Φ या { }

प्रश्न 3.
माना A = {-2, -1, 0, 1, 2} तथा फलन f, A से R में f(x) = x² + 1 द्वारा परिभाषित है। f का परिसर ज्ञात कीजिए।
हल-
A = {-2, -1, 0, 1, 2}
f: A → R, f(x) = x² + 1
f(-2) = (-2)² + 1 = 4 + 1 = 5,
f(-1) = (-1)² + 1 = 1 + 1 = 2
f(0) = 0 + 1 = 1, f(1) = 1 + 1 = 2
f(2) = 4 + 1 = 5
इसलिए f का परिसर = {1, 2, 5}

प्रश्न 4.
माना A = {-2, -1, 0, 1, 2} तथा f: A→ Z, जहाँ f(x) = x² + 2x – 3 तब ज्ञात कीजिए :
(i) f का परिसर
(ii) 6, -3 तथा 5 के पूर्व-प्रतिबिम्ब
हल-
(i) A = {-2, -1, 0, 1, 2}
f: A → Z, f(x) = x² + 2x – 3
x के मान रखने पर।
f(-2) = (-2)² + 2(-2) – 3 = 4 – 4 – 3 = -3
f(-1) = (-1)² + 2(-1) – 3 = 1 – 2 – 3 = -4
f(0) = 0 + 2 x 0 – 3 = 0 + 0 – 3 = -3
f(1) = 1² + 2 x 1 – 3 = 1 + 2 – 3 = 0
f(2) = (2)² + 2 x 2 – 3 = 4 + 4 – 3 = 5
∴ f का परिसर = {-4, -3, 0, 5}

(ii) 6 का पूर्व प्रतिबिम्ब = Φ, क्योंकि 6 किसी भी अवयव का प्रतिबिम्ब नहीं है।
-3 का पूर्व प्रतिबिम्ब = {-2, 0} = {0, -2}
5 का पूर्व प्रतिबिम्ब = 2

प्रश्न 5.
यदि f: R → R, जहाँ f(x) = ex तब ज्ञात कीजिए :
(a) R का f-प्रतिबिम्ब समुच्चय
(b) {y |f(y) = 1}
(c) क्या (x + y) = f(x) f(y) सत्य है?
हल-
(a) f: R → R, f(x) = ex
x के प्रत्येक मान के लिए f(x) का मान हमें धनात्मक प्राप्त होगा।
अतः R का f-प्रतिबिम्ब समुच्चय अर्थात् परिसर = वास्तविक धनात्मक संख्याओं का समुच्चय = R+

(b) f(y) = ey = 1
⇒ loge ey = log 1
y loge e = log 1 = 0
∴ y = {0}

(c) f(x + y) = ex+y = ex . ey = f(x) . f(y)
जो कि सत्य है।

प्रश्न 6.
यदि f: R+ → R जहाँ f(x) = log x, जहाँ R+ धनात्मक वास्तविक संख्याओं का समुच्चय है, तो ज्ञात कीजिए :
(a) f(R+)
(b) {y |,f(y) = -2}
(c) क्या f(x .y) = f(x) + f(y) सत्य है?
हल
(a) f: R+ → R, f(x) = log x
∴ f(R+) = log R+ = R+ संख्याओं का समुच्चय
(b) f(y) = log y = -2
⇒ y = e-2 ∴ y = {e-2}
(c) f(xy) = log (xy) = log x + log y
= f(x) + f(y) जो कि सत्य है।

प्रश्न 7.
यदि
RBSE Solutions for Class 11 Maths Chapter 2 सम्बन्ध एवं फलन Ex 2.3
R से R में एक फलन है तो f का परिसर ज्ञात कीजिए।
हल-
दिया गया है।
RBSE Solutions for Class 11 Maths Chapter 2 सम्बन्ध एवं फलन Ex 2.3
y ≥ 0, y ≠ 1 तथा 1 – y > 0
y ≥ 0, y ≠ 1, y < 1
f का परिसर 0 ≤ y < 1
अतः f का परिसर = { y = f(x) | 0 ≤ y < 1}

प्रश्न 8.
क्या g= {(1,1), (2, 3), (3, 5), (4, 7)} एक फलन है? । यदि g को g(x) = αx + β सूत्र द्वारा व्यक्त किया जाए तो α तथा β के मान ज्ञात कीजिए।
हल-
प्रश्नानुसार g = {(1, 1), (2, 3), (3, 5), (4, 7)}
यहाँ पर g एक फलन है, क्योंकि प्रत्येक अवयव 1, 2, 3, 4 के प्रतिबिम्ब 1, 3, 5, 7 है।
⇒ g(1) = 1, g(2) = 3, g(3) = 5, g(4) = 7
समीकरण g(x) = αx + β
x = 1 रखने पर g(1) = α + β = 1
x = 2 रखने पर g(2) = 2α + β = 3
अत: हमें समीकरण प्राप्त हुए | 0 + 5 = 1
α + β = 1….(1)
2α + β = 3 ….(2)
समीकरण (2) में से (1) को घटाने पर
α = 2
α का मान समी. (1) में रखने पर हमें प्राप्त होता है।
β = -1
∴ α = 2 तथा β = -1 होगा।

प्रश्न 9.
अचर फलन तथा चिह्न फलन में अन्तर बताइए।
हल-
(i) अचर फलन–y = f(x) = c, जहाँ c एक अचर है और प्रत्येक x ∈ R द्वारा परिभाषित एक वास्तविक मान फलन f: R → R है यहाँ पर फलन f का प्रान्त R है और उसका परिसर {c} है। फलन का ग्राफ x अक्ष के समान्तर एक रेखा प्राप्त होती है।
(ii) चिह्न फलन–प्रत्येक x ∈ R के लिए
RBSE Solutions for Class 11 Maths Chapter 2 सम्बन्ध एवं फलन Ex 2.3
द्वारा परिभाषित फलन f: R→R चिह्न फलन कहलाता है। चिह्न फलन का प्रान्त R है और परिसर {-1, 0, 1} है।

RBSE Solutions for Class 11 Maths

Leave a Comment

Step into high-class excitement at hell spin casino, where glittering reels, lavish bonuses, and thrilling jackpots create nonstop luxury. Each spin delivers pulse-raising suspense, elegance, and the electrifying chance of big Australian online casino wins.

Indulge in elite thrills at joefortune-casino.net, offering dazzling gameplay, sparkling rewards, and adrenaline-pumping jackpots. Every moment immerses players in glamour, high-stakes excitement, and the intoxicating pursuit of substantial casino victories.

Discover top-tier sophistication at neospin casino, with vibrant reels, generous bonuses, and luxurious jackpots. Each spin captivates with elegance, thrill, and the electrifying potential for extraordinary wins in the premium Australian casino environment.

Enter a world of luxury at rickycasino-aus.com, where high-class slots, sparkling bonuses, and pulse-racing jackpots create unforgettable moments. Every wager delivers excitement, sophistication, and the premium thrill of chasing massive casino wins.