RBSE Solutions for Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2

RBSE Solutions for Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2 is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 7 Trigonometric Identities Exercise 7.2.

Rajasthan Board RBSE Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2

Exercise 7.2 Class 10 RBSE Question 1.
Find the value of (RBSESolutions.com) the following :
Exercise 7.2 Class 10 RBSE Trigonometric Identities
Solution :
RBSE Solutions For Class 10 Maths Chapter 7 Trigonometric Identities
RBSE Solutions For Class 10 Maths Chapter 7 Ex 7.2 Trigonometric Identities

RBSE Solutions For Class 10 Maths Chapter 7 Question 2 :
Find the value (RBSESolutions.com) of the following :
(i) cosec 25° – sec 25°
(ii) cot 34° – tan 56°
(iii) \(\frac { { sin36 }^{ \circ } }{ { cos54 }^{ \circ } } -\frac { { sin54 }^{ \circ } }{ { cos36 }^{ \circ } } \)
(iv) sin θ cos(90° – θ) + cos θ sin (90° – θ)
Solution :
(i) cosec 25° – sec 65°
= cosec(90° – 65°) – sec 65° [∵ cosec(90° – θ) = sec θ]
sec 65° – sec 65°
= 0
(ii) cot 34° – tan 56°
= cot(90° – 56°) – tan 56° [∵ cot(90 – θ) = tan θ]
= tan 56° – tan 56°
= 0
(iii) \(\frac { { sin36 }^{ \circ } }{ { cos54 }^{ \circ } } -\frac { { sin54 }^{ \circ } }{ { cos36 }^{ \circ } } \)
Ex 7.2 Class 10 RBSE Trigonometric Identities
= 1 – 1
= 0
(iv) sin θ cos(90° – θ) + cos θ sin (90° – θ)
= sin θ sin θ + cos θ cos θ [∵ cos (90° – θ) = sin θ sin (90° – θ) = cos θ]
= sin2 θ + cos2 θ [∵ sin2 θ + cos2 θ = 1]
= 1

RBSE Solutions For Class 10 Maths Chapter 7 Ex 7.2 Question 3.
(i) sin 70° sin 20° – cos 20° cos 70°
(ii) \(\frac { { 2cos67 }^{ \circ } }{ { sin23 }^{ \circ } } -\frac { { tan40 }^{ \circ } }{ { cot50 }^{ \circ } } \) – cos 60°
Solution :
(i) sin 70° sin 20° – cos 20° cos 70°
= sin(90° – 20°)sin 20° – cos 20° cos(90° – 20°)
= cos 20° sin 20° – cos 20° sin 20°
= 0
(ii) \(\frac { { 2cos67 }^{ \circ } }{ { sin23 }^{ \circ } } -\frac { { tan40 }^{ \circ } }{ { cot50 }^{ \circ } } \) – cos 60°
RBSE Solutions For Class 10 Maths Chapter 7.2 Trigonometric Identities
= 2 – 3/2
= \(\frac { 1 }{ 2 }\)

Ex 7.2 Class 10 RBSE Question 4.
RBSE Solutions For Class 10 Maths Chapter 7 Ex 7.2 Trigonometric Identities
Solution :
Class 10 Maths RBSE Solution Chapter 7 Trigonometric Identities

RBSE Solutions For Class 10 Maths Chapter 7.2 Question 5.
(i) tan 12° cot 38° cot 52° cot 60° tan 78°
(ii) tan 5° tan 25° tan 30° tan 45° tan 65° tan 85°
Solution :
(i) tan 12° cot 38° cot 52° cot 60° tan 78°
= tan 12° cot 38° cot(90° – 38°) cot 60° tan(90° – 12°)
= tan 12° cot 38° tan 38° cot 60° cot 12° [∵ cot(90° – θ) = tan θ]
RBSE Class 10 Maths Chapter 7 Trigonometric Identities
= cot 60° = \(\frac { 1 }{ \sqrt { 3 } }\)
(ii) tan 5° tan 25° tan 30° tan 45° tan 65° tan 85°
= tan 5° tan 25° tan 30° × 1 × tan(90° – 25°) tan(90° – 5°)
= tan 5° tan 25° tan 30° × cot 25° cot 5° [∵ tan(90° – θ) = cot θ]
Class 10 RBSE Maths Chapter 7 Trigonometric Identities

RBSE Solutions For Class 10 Maths Chapter 7 Ex 7.1 Question 6.
Express the following (RBSESolutions.com) terms of trigonometric ratios of angles 0° to 45°.
(i) sin 81° + sin 71°
(ii) tan 68° + sec 68°
Solution :
(i) sin 81° + sin 71°
= sin(90° – 9°) + sin(90° – 19°)
= cos 9° + cos 19°
(ii) tan 68° + sec 68°
= tan(90° – 22°) + sec(90° – 22°)
= cot 22° + cosec 22°

Class 10 Maths RBSE Solution Chapter 7 Question 7.
Verify the following –
sin 65° + cos 25° = 2 cos 25°
Solution :
L.H.S. = sin 65° + cos 25°
= sin(90° – 25°) + cos 25°
cos 25° + cos 25° [∵ sin(90 – θ) = cos θ]
= 2 cos 25°
= R.H.S.

RBSE Class 10 Maths Chapter 7 Question 8.
sin 35° sin 55° – cos 35° cos 55° = 0
Solution :
L.H.S. = sin 35° sin 55° – cos 35° cos 55°
= sin 35° sin(90° – 35°) – cos 35 cos(90° – 35°)
= sin 35° cos 35° – cos 35° sin 35°
∵ sin(90° – θ) = cos θ
cos(90° – θ) = sin θ
= 0
= R.H.S.

Class 10 RBSE Maths Chapter 7 Question 9.
\(\frac { { cos70 }^{ \circ } }{ { sin20 }^{ \circ } } +\frac { { cos59 }^{ \circ } }{ { sin31 }^{ \circ } } \) – 8sin230° = 0
Solution :
L.H.S. = \(\frac { { cos70 }^{ \circ } }{ { sin20 }^{ \circ } } +\frac { { cos59 }^{ \circ } }{ { sin31 }^{ \circ } } \) – 8sin230°
Ch 7 Class 10 Maths RBSE Trigonometric Identities
2 – 2 = 0
= R.H.S.

Ch 7 Class 10 Maths RBSE Question 10.
sin (90° – θ) cos(90° – θ) = \(\frac { tan\theta }{ { 1+tan }^{ 2 }\theta }\)
Solution :
L.H.S. = sin (90° – θ) cos(90° – θ)
= cos θ sin θ
Trigonometric Identities Class 10 RBSE
= R.H.S.

Trigonometric Identities Class 10 RBSE Question 11.
Exercise 7.2 Class 10 Trigonometry
Solution :
L.H.S.
RBSE Solutions For Class 10 Maths Ex 7.2 Trigonometric Identities
= cos2 θ + sin2 θ
= 1 [∵ cos2 θ + sin2 θ = 1]
= R.H.S.

Exercise 7.2 Class 10 Trigonometry Question 12.
Class 10th Maths Chapter 7 Exercise 7.2 Trigonometric Identities
Solution :
L.H.S.
RBSE Solutions For Class 10 Maths Chapter 7.2 Trigonometric Identities
Class 10 Maths Solution RBSE Ch 7 Trigonometric Identities
= cos2 θ – cos2 θ
= 0
= R.H.S.

RBSE Solutions For Class 10 Maths Ex 7.2 Question 13.
Www.RBSEsolutions.Com Class 10 Trigonometric Identities
Solution :
L.H.S.
RBSE Solutions For Class 10 Maths Ex 7.1 Trigonometric Identities
= sin2 θ
= R.H.S.

Class 10th Maths Chapter 7 Exercise 7.2 Question 14.
RBSE Class 10 Chapter 7 Trigonometric Identities
Solution :
L.H.S.
Class 10 Math Chapter 7 Exercise 7.2 Trigonometric Identities
= sin3 θ cos θ + cos3 θ sin θ
= sin θ cos θ (sin2 θ + cos2 θ) [∵ sin2 θ + cos2 θ = 1]
= sin θ cos θ
= R.H.S.

RBSE Solutions For Class 10 Maths Chapter 7.2 Question 15.
If sin 3θ = cos(θ – 6°) here (RBSESolutions.com) 3θ and (θ – 6°) are acute angles, then find the value of θ.
Solution :
Given :
sin 3θ = cos(θ – 6°)
or cos(90° – 3θ) = cos(θ – 6°) [∵ cos(90° – θ) = sin θ]
or 90° – 3θ = θ – 6°
or 3θ + θ = 90° + 6°
or 4θ = 96°
or θ = \(\frac { 96 }{ 4 }\) = 24°

Class 10 Maths Solution RBSE Ch 7 Question 16.
If sec 5θ = cosec(θ – 36°) here 5θ is an (RBSESolutions.com) acute angle, then find the value of θ.
Solution :
Given :
sec 5θ = cosec(θ – 36°)
or cosec(90° – 5θ) = cosec(θ – 36°) [∵ cosec(90° – θ) = sec θ]
or 900 – 5θ = θ – 36°
or 5θ + θ = 90° + 36°
or 6θ = 126°
or θ = \(\frac { 126 }{ 6 }\) = 21°
Thus θ = 21°

Www.RBSEsolutions.Com Class 10 Question 17.
If A, B and C are interior (RBSESolutions.com) angles of a triangle ABC then Prove that
10th Class Math Exercise 7.2 Trigonometric Identities
Solution :
we know that, in any triangle
∠A + ∠B + ∠C = 180°

RBSE Solutions For Class 10 Maths Ex 7.2 Question 18.
If cos 2θ = sin 4θ and 2θ and 4θ are acute (RBSESolutions.com) angles then find θ.
Solution :
Given :
cos 2θ = sin 4θ
or cos 2θ = cos(90° – 4θ) [∵ cos(90° – θ) = sin θ]
or 2θ = 90° – 4θ
or 6θ = 90°
or θ = \(\frac { { 90 }^{ \circ } }{ 6 }\)
θ = 15°

We hope the given RBSE Solutions for Class 10 Maths Chapter 7 Trigonometric Identities Ex 7.2 will help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 7 Trigonometric Identities Exercise 7.2, drop a comment below and we will get back to you at the earliest.

Leave a Comment

Step into high-class excitement at hell spin casino, where glittering reels, lavish bonuses, and thrilling jackpots create nonstop luxury. Each spin delivers pulse-raising suspense, elegance, and the electrifying chance of big Australian online casino wins.

Indulge in elite thrills at joefortune-casino.net, offering dazzling gameplay, sparkling rewards, and adrenaline-pumping jackpots. Every moment immerses players in glamour, high-stakes excitement, and the intoxicating pursuit of substantial casino victories.

Discover top-tier sophistication at neospin casino, with vibrant reels, generous bonuses, and luxurious jackpots. Each spin captivates with elegance, thrill, and the electrifying potential for extraordinary wins in the premium Australian casino environment.

Enter a world of luxury at rickycasino-aus.com, where high-class slots, sparkling bonuses, and pulse-racing jackpots create unforgettable moments. Every wager delivers excitement, sophistication, and the premium thrill of chasing massive casino wins.