RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.1

RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.1 is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 2 वास्तविक संख्याएँ Exercise 2.1.

Board RBSE
Textbook SIERT, Rajasthan
Class Class 10
Subject Maths
Chapter Chapter 2
Chapter Name वास्तविक संख्याएँ
Exercise Exercise 2.1
Number of Questions Solved 5
Category RBSE Solutions

Rajasthan Board RBSE Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.1

प्रश्न 1.
दर्शाइये कि एक विषम धनात्मक पूर्णांक(RBSESolutions.com) संख्या को वर्ग 8q+1 के रूप का होता है जहाँ q एक धनात्मक पूर्णाक है।
हल:
माना a कोई धनात्मक विषम पूर्णाक है।
हम जानते हैं कि धनात्मक विषम पूर्णांक a = 2n + 1 के रूप को होगा
अतः विषम धनात्मक पूर्णांक संख्या 4 = 2n + 1 होगी।
जहाँ n= 1, 2, 3, ….
प्रश्नानुसार (a)2 = (2n + 1)2
= 4n2 + 4n + 1
= 4m (1 + 1) + 1
संख्या n(n + 1) सदैव धनात्मक सम पूर्णांक ही प्राप्त होगा।
जहाँ n = 1, 2, 3, …..
अतःn (n + 1) = 29 जहाँ q एक धनात्मक पूर्णाक है।
अतः (a)2= 4 x 2q + 1
= 8q + 1
अतः विषम धनात्मक पूर्णांक संख्या का वर्ग 8q + 1 के रूप का होता है।

RBSE Solutions

इति सिद्धम्

प्रश्न 2.
यूक्लिड विभाजन प्रमेयिका द्वारा दर्शाइये कि(RBSESolutions.com) किसी भी धनात्मक पूर्णाक संख्या का घन 9q या 9q +1 या 9q + 8 के रूप का होता है, जहाँ q एक पूर्णांक संख्या है।
हल:
माना कि कोई धनात्मक पूर्णांक है। तब यह 3m, 3m + 1 या 3m + 2 के रूप में होगा।
सिद्ध करना है-इनमें से प्रत्येक का घन 9q, 9q + 1 या 9q + 8 के रूप में लिखा जा सकता है।
(3m)3 = 27m3 = 9(3m3)
= 9q जहाँ q= 3m3 है।
तथा (3m + 1)3= (3m)3 + 3(3m)2 . 1 + 3(3m) . 12 + 1
= 27m3 + 27m2 + 9m + 1
= 9(3m3 + 3m2 + m) + 1
= 9q + 1 जहाँ q = 3m + 3m2 + m है।
तथा (3m + 2)3 = (3m)3 + 3(3m)2. 2 + 3(3m). 22 + 8
= 27m3 + 54m2 + 36m + 8
= 9(3m + 6m2 + 4m) + 8
= 9q + 8 जहाँ q= 3m3 + 6m2 +4m है।
अतः स्पष्ट है कि किसी भी धनात्मक पूर्णांक संख्या का धन 9q या 9q + 1 या 9q + 8 के रूप का होता है।

प्रश्न 3.
दर्शाइए कि किसी भी धनात्मक (RBSESolutions.com) विषम पूर्णांक संख्या को 6q + 1 या 6q + 3 या 6q + 5 के रूप में व्यक्त किया जा सकता है, जहाँ q एक धनात्मक पूर्णाक है।
हल:
माना कि a एक धनात्मक विषम पूर्णाक है अब a और b = 6 के लिए यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से- a = 6q +r
∵ 0 ≤ r ≤ 6 अतः सम्भावित शेषफल 0, 1, 2, 3, 4 और 5 होंगे। अर्थात् a के मान 6q या 6q + 1 या 6q + 2 या 6q + 3 या 6q +4 या 6q + 5 हो सकते हैं, जहाँ q कोई भाज्य है। अब चूँकि a एक विषम धनात्मक पूर्णांक है अतः यह 6q, 6q + 2 या 6q + 4 के रूप का नहीं हो सकती क्योंकि ये सभी 2 से भाज्य होने के कारण सम धनात्मक पूर्णांक हैं । अतः कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 60 + 3 या 6q + 5 के रूप का होता है जहाँ q कोई पूर्णाक है।

RBSE Solutions

प्रश्न 4.
निम्नलिखित संख्या-युग्मों का यूक्लिड विभाजन(RBSESolutions.com) विधि द्वारा महत्तम समापवर्तक (HCF) ज्ञात कीजिए—
(i) 210, 55
(ii) 420, 130
(iii) 75, 243
(iv) 135, 225
(v) 196, 38220
(vi) 867, 255
हल:
(i) 210 और 55
यूक्लिड विभाजन(RBSESolutions.com) एल्गोरिथ्म के प्रयोग से-
चरण I— ∵ 210 > 55 अतः यूक्लिड प्रमेयिका के अनुसार
210 = 55 x 3 + 45
चरण II— ∵ शेषफल 45 ≠ 0 है अतः अब 55 और 45 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
55 = 45 x 1 + 10
चरण III— ∵ शेषफल 10 ≠ 0 है अतः अब 45 व 10 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
45 = 10 x 4 + 5
चरण IV— ∵ शेषफल 5 ≠ 0 है अतः अब 10 व 5 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर।
10 = 5 x 2 + 0
अब शून्य प्राप्त हो जाने पर यह प्रक्रिया समाप्त (RBSESolutions.com) हो जायेगी। चरण IV में भाजक 5 है अतः 210 और 55 का HCF 5 है। उत्तर

(ii) 420 और 130
यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से-
चरण I— ∵ 420 > 130 अतः यूक्लिड प्रमेयिका के अनुसार
420 = 130 x 3 + 30
चरण II— ∵ शेषफल 30 ≠ 0 है अतः अब 130 और 30 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
130 = 30 x 4 + 10
चरण III— ∵ शेषफल 10 ≠ 0 है अतः अब 30 व 10 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
30 = 10 x 3 + 0
अब शून्य प्राप्त हो जाने पर यह प्रक्रिया समाप्त हो जायेगी। (RBSESolutions.com) चरण III में भाजक 10 है अतः 420 और 130 का HCF 10 है। उत्तर

(iii) 75 और 243
यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से-
चरण I— ∵ 243 > 75 अतः यूक्लिड प्रमेयिका के अनुसार
243 = 75 x 3 + 8
चरण II— ∵ शेषफल 18 ≠ 0 है अतः अब 75 और 18 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर।
75 = 18 x 4 + 3
चरण III— ∵ शेषफल 3 ≠ 0 है अतः अब 18 और 3 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर।
18 = 3 x 6 + 0
अब शून्य प्राप्त हो जाने पर यह प्रक्रिया समाप्त हो जायेगी। चरण III में। भाजक 3 है अतः 75 और 243 का HCF 3 है। उत्तर

(iv) 135 और 225
यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से-
चरण I— ∵ 225 > 135 अतः यूक्लिड प्रमेयिका के अनुसार
225 = 135 x 1 + 90
चरण II— ∵ शेषफल 90 ≠ 0 है अतः अब 135 और 90 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
135 = 90 x 1 + 45
चरण III— ∵ शेषफल 45 ≠ 0 अतः अब 90 व 45 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर।
90 = 45 x 2 + 0
अब शून्य प्राप्त हो जाने पर यह प्रक्रिया समाप्त हो जाएगी। (RBSESolutions.com) चरण III में भाजक 45 है अतः 135 और 225 का HCF 45 है। उत्तर

(v) 196 और 38220
यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से
चरण I— ∵ 38220 > 196 अतः यूक्लिड प्रमेयिका के अनुसार
38220 = 196 x 195 + 0
चूँकि शून्य प्राप्त हो गया है अतः प्रक्रिया यहीं समाप्त हो जाएगी। इस चरण में भाजक 196 है। अतः 38220 और 196 का HCF 196 है। उत्तर

(vi) 867 और 255
यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से
चरण I— ∵ 867> 255 अतः यूक्लिड प्रमेयिका के अनुसार
867 = 255 x 3 + 102
चरण II— ∵ शेषफल 102 ≠ 0 अतः अब 255 और 102 पर (RBSESolutions.com) यूक्लिड प्रमेयिका प्रयुक्त करने पर
255 = 102 x 2 + 51
चरण III— ∵ शेषफल 51 ≠ 0 अतः अब 102 और 51 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
102 = 51 x 2 + 0
अब शून्य प्राप्त हो जाने पर यह प्रक्रिया समाप्त हो जाएगी। चरण III में भाजक 51 है अतः 867 और 255 का HCF 51 है। उत्तर

RBSE Solutions

प्रश्न 5.
यदि संख्या 408 तथा 1032 के महत्तम समापवर्तक (HCF) को 1032x – 408 × 5 के रूप में व्यक्त किया जाता है, तो x का मान ज्ञात कीजिए।
हल:
408 और 1032 को HCF ज्ञात करने पर यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से-
चरण I— ∵ 1032 > 408 अत: यूक्लिड प्रमेयिका के अनुसार
1032 = 408 x 2 + 216
चरण II— ∵ शेषफल 216 ≠ 0 है अतः अब 408 और 216 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
408 = 216 x 1 + 192
चरण III— ∵ शेषफल 192 ≠ 0 अतः अब 216 व 192 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
216 = 192 x 1 + 24
चरण IV— ∵ शेषफल 24 ≠ 0 अतः अब 192 व 24 पर यूक्लिड प्रमेयिका प्रयुक्त करने पर
192 = 24 x 8 + 0
अब शून्य प्राप्त हो जाने पर यह प्रक्रिया समाप्त हो (RBSESolutions.com) जायेगी। चरण IV में भाजक 24 है अतः 408 और 1032 का HCF 24 है।
प्रश्नानुसार HCF (24) को 1032x – 408 x 5 के रूप में व्यक्त किया जाता है।
अतः 24 = 1032x – 408 x 5
⇒ 24 = 1032 – 2040
या 1032x = 2040 + 24
या 1032x = 2064
∴ \(x=\frac { 2064 }{ 1032 } =2\)
अतः x = 2 उत्तर

RBSE Solutions

We hope the RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.1 help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 2 वास्तविक संख्याएँ Exercise 2.1, drop a comment below and we will get back to you at the earliest.

Leave a Comment

Step into high-class excitement at hell spin casino, where glittering reels, lavish bonuses, and thrilling jackpots create nonstop luxury. Each spin delivers pulse-raising suspense, elegance, and the electrifying chance of big Australian online casino wins.

Indulge in elite thrills at joefortune-casino.net, offering dazzling gameplay, sparkling rewards, and adrenaline-pumping jackpots. Every moment immerses players in glamour, high-stakes excitement, and the intoxicating pursuit of substantial casino victories.

Discover top-tier sophistication at neospin casino, with vibrant reels, generous bonuses, and luxurious jackpots. Each spin captivates with elegance, thrill, and the electrifying potential for extraordinary wins in the premium Australian casino environment.

Enter a world of luxury at rickycasino-aus.com, where high-class slots, sparkling bonuses, and pulse-racing jackpots create unforgettable moments. Every wager delivers excitement, sophistication, and the premium thrill of chasing massive casino wins.